Skip to main content

Case study

· 2 min read
Benjamin Gallois
FastTrack creator
Copyright (C)  FastTrack.Permission is granted to copy, distribute and/or modify this document.This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Case study #1

Objective: track multiple D. Melanogaster and determine the time spent in the upper area of the experimental apparatus. Dataset:

Import the data#

import fastanalysis as faimport seaborn as snsimport numpy as npimport matplotlib as"fivethirtyeight")import warningswarnings.filterwarnings('ignore')
data = fa.Load("tracking.txt")

Explore the tracking data#

# Distribution of vertical positions for all the objectsp0 = sns.histplot(data=data.getDataframe(), x="yBody", kde=True);p0.set_xlabel("Vertical position");


# Distribution of vertical positions for each individualp1 = sns.displot(data=data.getDataframe(), x="yBody", hue="id", kind="kde");"Vertical position");


p2 = sns.boxplot(data=data.getDataframe(), x="id", y="yBody");p2.set_xlabel("Id");p2.set_ylabel("Vertical position");


Compute the preference#

# For each individual computes a preference indexpi = []for i in range(data.getObjectNumber()):    dat = data.getObjects(i)    dat.loc[:, "diffTime"] = dat.imageNumber.diff().values    up = dat[dat.yBody > 100]    down = dat[dat.yBody <= 100]    pi.append((up.diffTime.sum() - down.diffTime.sum())/(up.diffTime.sum() + down.diffTime.sum()))
p3 = sns.boxplot(y=pi)p3.set_ylim(-1, 1)p3.set_ylabel("Preference index");p3.set_title("Objects preference to the upper side");


p4 = sns.kdeplot(data=data.getDataframe(), x=np.random.normal(size=data.getDataframe().values.shape[0]), y="yBody", fill=True);p4.set_xlabel("Horizontal position randomized");p4.set_ylabel("Vertical position");p4.set_title("Distribution of presence");


pi = []for i in range(data.getObjectNumber()):    dat = data.getObjects(i)    dat.loc[:, "diffTime"] = dat.imageNumber.diff().values    pref = []    for l, __ in enumerate(dat.yBody.values):        up = dat[0:l][dat[0:l].yBody.values > 100]        down = dat[0:l][dat[0:l].yBody.values <= 100]        pref.append((up.diffTime.sum() - down.diffTime.sum())/(up.diffTime.sum() + down.diffTime.sum()))    pi.append(pref)
for i, j in enumerate(pi):    p5= sns.lineplot(x=np.arange(len(j)), y=j, label=str(i))p5.set_xlabel("Time (images)"); p5.set_ylabel("Preference index");p5.set_title("Preference index function of time");p5.legend(title="id", bbox_to_anchor=(1.05, 1));